Back to Search Start Over

Bio-inspired synthesis of three-dimensional porous g-C3N4@carbon microflowers with enhanced oxygen evolution reactivity.

Authors :
Tong, Zhenwei
Yang, Dong
Zhao, Xuyang
Shi, Jiafu
Ding, Fei
Zou, Xiaoyan
Jiang, Zhongyi
Source :
Chemical Engineering Journal. Apr2018, Vol. 337, p312-321. 10p.
Publication Year :
2018

Abstract

In recent years, assembling 2D layered materials into three-dimensional (3D) architectures has become the research focus in catalysis fields. In this study, 3D porous g-C 3 N 4 @carbon (CN@C) microflowers composed of carbon-coated g-C 3 N 4 nanosheets were prepared by a facile bio-inspired method. At first, cyanuric acid-melamine (CAM) supermolecules were assembled into 3D microflowers with the mediation of sucrose molecules through a hydrothermal process, and then isomorphically converted into 3D CN@C microflowers upon calcination. By varying the saccharide species, it was found that the formyl groups of saccharide molecules and their self-polycondensation behavior could govern the CAM assembly and subsequent formation of microflower structure. The resultant CN@C microflowers exhibit high oxygen evolution reaction (OER) activity with a potential of 1.68 V at a current density of 10 mA cm −2 due to efficient mass and charge transfer, which is close to the reported value for the state-of-the-art metal catalyst IrO 2 /C (1.60 V, 0.1 mol L −1 KOH) and much superior to that of pure g-C 3 N 4 . [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13858947
Volume :
337
Database :
Academic Search Index
Journal :
Chemical Engineering Journal
Publication Type :
Academic Journal
Accession number :
128516103
Full Text :
https://doi.org/10.1016/j.cej.2017.12.064