Back to Search Start Over

Crystallization processes in bicomponent thin film depositions: Towards a realistic kinetic Monte Carlo simulation.

Authors :
Martinez-Martinez, D.
Herdes, C.
Vega, Lourdes F.
Source :
Surface & Coatings Technology. Jun2018, Vol. 343, p38-48. 11p.
Publication Year :
2018

Abstract

The kinetic Monte Carlo (KMC) method is a powerful and simple tool to simulate the growth of thin films by deposition. However, one of its major drawbacks is the artificial order induced by the use of regular lattices. An algorithm that mimics the crystallization processes in bi-component thin film depositions via a novel KMC approach is presented in this work. This new algorithm, named GEM-CA (Geometrical Energy Modification-Crystallization Algorithm), modifies the hopping energy barrier depending on the geometrical configuration of the atoms surrounding one particular position. The novel approach allows obtaining amorphous, crystalline and mixed structures (i.e. nanocomposites), depending solely on the synthesis parameters. In addition, we have developed a method for the analysis of deposited structures based on their degree of order. The influence of different deposition parameters such as temperature or composition is discussed in detail. GEM-CA reproduces experimentally observed trends of bi-component film deposition. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02578972
Volume :
343
Database :
Academic Search Index
Journal :
Surface & Coatings Technology
Publication Type :
Academic Journal
Accession number :
128944583
Full Text :
https://doi.org/10.1016/j.surfcoat.2017.11.022