Back to Search
Start Over
Remarks on selectively absolute star-Lindelöf spaces.
- Source :
-
Topology & Its Applications . May2018, Vol. 240, p59-68. 10p. - Publication Year :
- 2018
-
Abstract
- A space X is selectively absolutely star-Lindelöf [1,3] if for each open cover U of X and any sequence ( D n : n ∈ ω ) of dense subsets of X , there are finite sets F n ⊆ D n ( n ∈ ω ) such that S t ( ⋃ n ∈ ω F n , U ) = X . In this paper, we continue to investigate topological properties of selectively absolute star-Lindelöf spaces, and show the following statements: (1) There exists a Tychonoff selectively a-star-Lindelöf, pseudocompact space X having a regular closed G δ subset which is not star-Lindelöf (hence not selectively a-star-Lindelöf); (2) Assuming 2 ℵ 0 = 2 ℵ 1 , there exists a normal selectively a-star-Lindelöf space X having a regular closed G δ subset which is not star-Lindelöf (hence not selectively a-star-Lindelöf); (3) An open F σ -subset of a selectively a-star-Lindelöf space is selectively a-star-Lindelöf; (4) For any cardinal κ , there exists a Tychonoff selectively a-star-Lindelöf, pseudocompact space X such that e ( X ) ≥ κ . [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 01668641
- Volume :
- 240
- Database :
- Academic Search Index
- Journal :
- Topology & Its Applications
- Publication Type :
- Academic Journal
- Accession number :
- 128956016
- Full Text :
- https://doi.org/10.1016/j.topol.2018.02.033