Back to Search Start Over

Metal microparticle – Polymer composites as printable, bio/ecoresorbable conductive inks.

Authors :
Lee, Seungae
Koo, Jahyun
Kang, Seung-Kyun
Park, Gayoung
Lee, Yung Jong
Chen, Yu-Yu
Lim, Seon Ah
Lee, Kyung-Mi
Rogers, John A.
Source :
Materials Today. Apr2018, Vol. 21 Issue 3, p207-215. 9p.
Publication Year :
2018

Abstract

Biologically and environmentally resorbable electronic devices support application possibilities that cannot be addressed with conventional technologies. This paper presents highly conductive, water-soluble composites that can be printed to form contacts, interconnects, antennas, and other important features that are essential to nearly all systems of this type. An optimized material formulation involves in situ polymerization to yield a polyanhydride containing a dispersion of molybdenum microparticles at appropriate concentrations. Comparisons of essential physical and electrical properties of these materials to those of composites formed with other polymers and other metal microparticles reveal the relevant considerations. Various functional demonstrations of screen-printed test structures and devices illustrate the suitability of these conductive inks for use in water-soluble electronic devices. A key advantage of the material introduced here compared to alternatives is its ability to maintain conductance over significant periods of time while immersed in relevant aqueous solutions. Studies involving live animal models establish the biocompatibility. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13697021
Volume :
21
Issue :
3
Database :
Academic Search Index
Journal :
Materials Today
Publication Type :
Academic Journal
Accession number :
129252899
Full Text :
https://doi.org/10.1016/j.mattod.2017.12.005