Back to Search Start Over

GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments.

Authors :
Leino, Aleksi A.
Samolyuk, German D.
Sachan, Ritesh
Granberg, Fredric
Weber, William J.
Bei, Hongbin
Liu, Jie
Zhai, Pengfei
Zhang, Yanwen
Source :
Acta Materialia. Jun2018, Vol. 151, p191-200. 10p.
Publication Year :
2018

Abstract

Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50 Fe 50 , Ni 50 Co 50 ) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed in each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50 Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50 Fe 50 , a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50 Fe 50 . The significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13596454
Volume :
151
Database :
Academic Search Index
Journal :
Acta Materialia
Publication Type :
Academic Journal
Accession number :
129403731
Full Text :
https://doi.org/10.1016/j.actamat.2018.03.058