Back to Search Start Over

Decoupled PWM Plus Phase-Shift Control for a Dual-Half-Bridge Bidirectional DC–DC Converter.

Authors :
Xiangli, Kang
Li, Shouxiang
Smedley, Keyue Ma
Source :
IEEE Transactions on Power Electronics. Aug2018, Vol. 33 Issue 8, p7203-7213. 11p.
Publication Year :
2018

Abstract

This paper presents the analysis of low leakage inductance current regions, small-signal model, and decoupled control for a dual-half-bridge isolated bidirectional dc–dc converter with pulse width modulation plus phase-shift strategy. Traditionally, the duty cycle of the transistors is fixed at 0.5 and only the phase-shift is varied to regulate the output voltage. With PPS control, two control freedoms—the duty cycle is used to regulate the voltage gain and phase-shift is used to control the power flow—can be obtained to expand input-voltage variation range. In addition, since the amplitude of leakage inductance current is limited, the current stresses of transistors can be reduced. According to the analysis, there exists a region in which higher leakage inductance current leads to lower output power and thus, causes more conduction loss. Attention should be paid to avoid this operation region. Then, a small-signal model is derived in the low conduction loss region with the state space averaging method to facilitate the closed-loop design. In addition, a decoupled control strategy is proposed to eliminate the interactions between phase-shift ratio and duty cycle, so as to simplify the proportional-integral controller design significantly. A prototype was built to verify the theoretical analysis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858993
Volume :
33
Issue :
8
Database :
Academic Search Index
Journal :
IEEE Transactions on Power Electronics
Publication Type :
Academic Journal
Accession number :
129455444
Full Text :
https://doi.org/10.1109/TPEL.2017.2758398