Back to Search Start Over

Air pollution-oriented ecological risk assessment in Xiamen city, China.

Authors :
Shi, Longyu
Zhang, Miao
Yang, Bin
Gao, Lijie
Source :
International Journal of Sustainable Development & World Ecology. Aug2018, Vol. 25 Issue 5, p420-430. 11p.
Publication Year :
2018

Abstract

Urban energy consumption is one of the most important causes of air pollution. Air pollution-oriented ecological risk assessment is of great significance to the promotion of urban environmental protection. This paper focuses on ecological risk in Xiamen city caused by air pollutant discharge from urban energy consumption. The Long-range Energy Alternatives Planning model was used to establish two scenarios of energy consumption in Xiamen city, and based on different scenarios, we estimated urban energy consumption and discharge quantity of air pollutant (DQAP). A box model and an expert scoring method were used to calculate the air pollution burden (APB) of SO2, NO2, CO, PM10 and PM2.5 and to obtain the probabilities of different air pollution loads. An ecological risk assessment model was developed and utilized to predict Xiamen city’s ecological risks in 2020. The results showed that under an energy-saving scenario, the ecological risks for PM2.5, SO2 and NO2 are high, whereas the ecological risks for CO and PM10 are low. Under a baseline scenario, the ecological risks for PM2.5, SO2 and NO2 are moderate, whereas the ecological risks for CO and PM10 are low. In addition, the APB of SO2, NO2, CO, and PM2.5, but not of PM10, is predicted to rise. In the simulation, energy generation from coal is the main source of air pollution. Although the DQAP from automobiles is not high, it is predicted to rise year-on-year. In summary, the ecological risk due to pollution in Xiamen city is high, and the main pollutants are SO2, NO2 and PM2.5. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13504509
Volume :
25
Issue :
5
Database :
Academic Search Index
Journal :
International Journal of Sustainable Development & World Ecology
Publication Type :
Academic Journal
Accession number :
129472253
Full Text :
https://doi.org/10.1080/13504509.2017.1419390