Back to Search Start Over

High current density cation-exchanged SnO2–CdSe/ZnSe and SnO2–CdSe/SnSe quantum-dot photoelectrochemical cells.

Authors :
Naushad, Mu.
Khan, M. R.
Bhande, Sambhaji S.
Shaikh, Shoyebmohamad F.
Alfadul, S. M.
Shinde, Pritamkumar V.
Mane, Rajaram S.
Source :
New Journal of Chemistry. 6/7/2018, Vol. 42 Issue 11, p9028-9036. 9p.
Publication Year :
2018

Abstract

Research on the combination of low and high-bandgap energy materials through an ion-mediated chemical transformation of the nanostructure of one material into another, especially metal chalcogenide quantum dot (QD) solar cells plays a very important role in the fast charge transformation process with high power conversion efficiencies (PCE) by reducing surface charge recombinations. Based on a coordination chemistry approach, the present study demonstrates the importance of cation-exchange process in developing bandgap engineering of tin oxide–cadmium selenide (SnO2–CdSe) with zinc selenide (ZnSe) and tin selenide (SnSe) to form SnO2–CdSe/ZnSe and SnO2–CdSe/SnSe electrodes, respectively. Experimental conditions are optimized from optical and photovoltaic performances. Our best performing cation-exchange interface-modified photoelectrochemical devices, i.e., SnO2–CdSe/ZnSe and SnO2–CdSe/SnSe have achieved improvements of 21% and 28%, respectively, in their PEC values, i.e., 3.78% and 4.41% with remarkable current densities of 19.82 and 28.40 mA cm−2 when compared with SnO2–CdSe (1.63% and 9.74 mA cm−2). This is due to (a) the fast transfer of photo-generated electrons from the CdSe QD sensitizer to SnO2 photoanode by engineering a synergistically favourable band gap and (b) mitigation of a reverse photogenerated electron flow in the presence of a high band gap buffer ZnSe/SnSe layer, which would otherwise cause excessive recombinations. A simple cation-exchange interface modification process can, in general, pave the way for improving the performance of QD-based solar cells. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
11440546
Volume :
42
Issue :
11
Database :
Academic Search Index
Journal :
New Journal of Chemistry
Publication Type :
Academic Journal
Accession number :
129864298
Full Text :
https://doi.org/10.1039/c8nj01409d