Back to Search Start Over

MgO Nanoparticle Modified Anode for Highly Efficient SnO2‐Based Planar Perovskite Solar Cells.

Authors :
Ma, Junjie
Yang, Guang
Qin, Minchao
Zheng, Xiaolu
Lei, Hongwei
Chen, Cong
Chen, Zhiliang
Guo, Yaxiong
Han, Hongwei
Zhao, Xingzhong
Fang, Guojia
Source :
Advanced Science. Sep2017, Vol. 4 Issue 9, p1-1. 9p.
Publication Year :
2017

Abstract

Reducing the energy loss and retarding the carrier recombination at the interface are crucial to improve the performance of the perovskite solar cell (PSCs). However, little is known about the recombination mechanism at the interface of anode and SnO2 electron transfer layer (ETL). In this work, an ultrathin wide bandgap dielectric MgO nanolayer is incorporated between SnO2:F (FTO) electrode and SnO2 ETL of planar PSCs, realizing enhanced electron transporting and hole blocking properties. With the use of this electrode modifier, a power conversion efficiency of 18.23% is demonstrated, an 11% increment compared with that without MgO modifier. These improvements are attributed to the better properties of MgO‐modified FTO/SnO2 as compared to FTO/SnO2, such as smoother surface, less FTO surface defects due to MgO passivation, and suppressed electron–hole recombinations. Also, MgO nanolayer with lower valance band minimum level played a better role in hole blocking. When FTO is replaced with Sn‐doped In2O3 (ITO), a higher power conversion efficiency of 18.82% is demonstrated. As a result, the device with the MgO hole‐blocking layer exhibits a remarkable improvement of all J–V parameters. This work presents a new direction to improve the performance of the PSCs based on SnO2 ETL by transparent conductive electrode surface modification. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21983844
Volume :
4
Issue :
9
Database :
Academic Search Index
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
129907214
Full Text :
https://doi.org/10.1002/advs.201700031