Back to Search Start Over

A novel superconducting magnetic energy storage system design based on a three-level T-type converter and its energy-shaping control strategy.

Authors :
Lin, Xiaodong
Lei, Yong
Zhu, Yingwei
Source :
Electric Power Systems Research. Sep2018, Vol. 162, p64-73. 10p.
Publication Year :
2018

Abstract

Superconducting magnetic energy storage (SMES) has been widely used to stabilize the power fluctuations of wind farms to achieve efficient grid connections. However, conventional converters can rarely satisfy the high power quality requirements of a power grid. Compared to other convertors, a three-level T-type converter (3LT 2 C) can improve the output performance and operating efficiency of a system and reduce the voltage stress and conduction loss of power switches. Therefore, the 3LT 2 C has broad application prospects for electric power storage. A precise control strategy is also necessary for the practical application of an SMES system, which has significant nonlinear dynamic characteristics. Energy-shaping (ES) control is a nonlinear control method that is based on the theoretical design of interconnection and damping assignment (IDA), which considers both the nonlinear nature of a system and the energy perspective. This study proposes an ES control strategy for an SMES system based on a 3LT 2 C. Mathematical models and port-controlled Hamiltonian (PCH) models of the SMES are established. The ES control strategy of the SMES system is designed based on a feedback interconnection structure through analysis of the novel SMES topology. Finally, the effectiveness of the control strategy and the proposed topology are verified through simulations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03787796
Volume :
162
Database :
Academic Search Index
Journal :
Electric Power Systems Research
Publication Type :
Academic Journal
Accession number :
129973635
Full Text :
https://doi.org/10.1016/j.epsr.2018.05.006