Back to Search Start Over

Temporal-Spatial Characteristics of Drought in Guizhou Province, China, Based on Multiple Drought Indices and Historical Disaster Records.

Authors :
Cheng, Qingping
Gao, Lu
Chen, Ying
Liu, Meibing
Deng, Haijun
Chen, Xingwei
Source :
Advances in Meteorology. 6/14/2018, p1-22. 22p.
Publication Year :
2018

Abstract

Guizhou Province, China, experienced several severe drought events over the period from 1960 to 2013, causing great economic loss and intractable conflicts over water. In this study, the spatial and temporal characteristics of droughts are analyzed with the standard precipitation index (SPI), comprehensive meteorological drought index (CI), and reconnaissance drought index (RDI). Meanwhile, historical drought records are used to test the performance of each index at identifying droughts. All three indices show decreasing annual and autumn trends, with the latter particularly prominent. 29, 30, and 32 drought events were identified during 1960–2013 by the SPI, CI, and RDI, respectively. Continuous drought is more frequent in winter–spring and summer–autumn. There is a significant increasing trend in drought event frequency, peak, and strength since the start of the 21st century. Drought duration indicated by CI shows longer durations in the higher-elevation region of central and western Guizhou. The corresponding drought severity is high in these regions. SPI and RDI indicate longer drought durations in the lower elevation central and eastern regions of Guizhou Province, where the corresponding drought severity is also very strong. SPI shows an increasing trend in drought duration and drought severity across most of the regions of Guizhou. In general, SPI and RDI show an increasing trend in the western Guizhou Province and a decreasing trend in central and eastern Guizhou. Comparing these three drought indices with historical records, the RDI is found to be more objective and reliable than the SPI and CI when identifying the periods of drought in Guizhou. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16879309
Database :
Academic Search Index
Journal :
Advances in Meteorology
Publication Type :
Academic Journal
Accession number :
130160325
Full Text :
https://doi.org/10.1155/2018/4721269