Back to Search Start Over

MicroRNA-mediated interacting circuits predict hypoxia and inhibited osteogenesis of stem cells, and dysregulated angiogenesis are involved in osteonecrosis of the femoral head.

Authors :
Kao, Gour-Shenq
Tu, Yuan-Kun
Sung, Pei-Hsun
Wang, Feng-Sheng
Lu, Yu-Der
Wu, Chen-Ta
Lin, Rio L. C.
Yip, Hon-Kan
Lee, Mel S.
Source :
International Orthopaedics. Jul2018, Vol. 42 Issue 7, p1605-1614. 10p.
Publication Year :
2018

Abstract

<bold>Purpose: </bold>MicroRNAs (miRNAs) are associated with various pathologic conditions and can serve as diagnostic or therapeutic biomarkers. This study tried to identify the differentially expressed miRNAs to predict the possible pathomechanisms involved in osteonecrosis of the femoral head (ONFH).<bold>Methods: </bold>We compared the peripheral blood miRNAs in 46 patients with ONFH and 85 healthy controls by microarray and droplet digital polymerase chain reaction (ddPCR). Putative interacted networks between the differentially responded miRNAs were analyzed by web-based bioinformatics prediction tools.<bold>Results: </bold>Microarray identified 51 differentially expressed miRNAs with at least twofold change (upregulation in 34 and downregulation in 17), and the results were validated by ddPCR using six selected miRNAs. Bioinformatics genetic network analysis focusing on the six miRNAs found the upregulated miR-18a and miR-19a are associated with angiogenesis after induction of ischemia; the upregulated miR-138-1 can inhibit osteogenic differentiation of mesenchymal stem cells; the most targeted genes, p53 and SERBP1, are associated with hypoxia and hypofibrinolysis.<bold>Conclusions: </bold>This study combined the miRNA analysis with the bioinformatics and predicts that hypoxia, inhibited osteogenesis of stem cells, and dysregulated angiogenesis might be orchestrated through the miRNA interacting circuits in the pathogenesis of ONFH. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03412695
Volume :
42
Issue :
7
Database :
Academic Search Index
Journal :
International Orthopaedics
Publication Type :
Academic Journal
Accession number :
130360904
Full Text :
https://doi.org/10.1007/s00264-018-3895-x