Back to Search Start Over

Inverse probability weighted Cox regression for doubly truncated data.

Authors :
Mandel, Micha
de Uña‐Álvarez, Jacobo
Simon, David K.
Betensky, Rebecca A.
Source :
Biometrics. Jun2018, Vol. 74 Issue 2, p481-487. 7p.
Publication Year :
2018

Abstract

Summary: Doubly truncated data arise when event times are observed only if they fall within subject‐specific, possibly random, intervals. While non‐parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0006341X
Volume :
74
Issue :
2
Database :
Academic Search Index
Journal :
Biometrics
Publication Type :
Academic Journal
Accession number :
130361460
Full Text :
https://doi.org/10.1111/biom.12771