Back to Search Start Over

Nitrogen-enriched carbon spheres coupled with graphitic carbon nitride nanosheets for high performance supercapacitors.

Authors :
Zhu, Jun
Kong, Lirong
Shen, Xiaoping
Zhou, Hu
Zhu, Guoxing
Ji, Zhenyuan
Xu, Keqiang
Shah, Sayyar Ali
Source :
Dalton Transactions: An International Journal of Inorganic Chemistry. 8/7/2018, Vol. 47 Issue 29, p9724-9732. 9p.
Publication Year :
2018

Abstract

Three-dimensional (3D) nitrogen-doped carbon materials with a hierarchically porous structure are prepared by the introduction of nitrogen-doped carbon spheres (NCS) into the inter-sheet spaces of graphitic carbon nitride nanosheets (g-CN). The as-prepared graphitic carbon nitride/nitrogen-doped carbon sphere (g-CN/NCS) composites present a high nitrogen doping level, a unique hierarchically porous structure, and a high specific surface area of 448 m2 g−1. Such particular features make the g-CN/NCS composite an ideal material for supercapacitor electrodes, which could deliver a large specific capacitance of 403.6 F g−1 at 0.1 A g−1, an excellent rate capability of 220 F g−1 at 10 A g−1, and a high cycling stability with almost 100% capacitance retention after 5000 cycles at 20 A g−1. Furthermore, the g-CN/NCS electrode-based symmetric supercapacitors exhibit a decent energy density of 6.75 W h kg−1 at a power density of 1000 W kg−1. The enhanced performances are mainly attributed to the high nitrogen doping level and the hierarchically porous structure of the 3D structured g-CN/NCS composites, which provide an efficient pathway for transporting ions and electrons, and endow more active sites for electrochemical energy storage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14779226
Volume :
47
Issue :
29
Database :
Academic Search Index
Journal :
Dalton Transactions: An International Journal of Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
130892710
Full Text :
https://doi.org/10.1039/c8dt01549j