Back to Search Start Over

Finite Element Analysis of Different Double-Plate Angles in the Treatment of the Femoral Shaft Nonunion with No Cortical Support opposite the Primary Lateral Plate.

Authors :
Zhang, Hao
Li, Jiantao
Zhou, Jianfeng
Li, Lianting
Hao, Ming
Wang, Kun
Xu, Gaoxiang
Li, Chen
Zhang, Wei
Tang, Peifu
Source :
BioMed Research International. 7/31/2018, Vol. 2018, p1-8. 8p.
Publication Year :
2018

Abstract

Objectives. We evaluated the biomechanical outcome of different plate fixation strategies (the single plate construct, 45° double-plate construct, 90° double-plate construct, 135° double-plate construct, and 180° double-plate construct) used for the fixation of the femoral shaft nonunion with no cortical support opposite the primary lateral plate. This may help surgeons choose the optimal therapy to the femoral shaft nonunion. Methods. The femoral shaft nonunion with no medial support and the models of lateral plate and medial plate was constructed in 3-matic software and UG-NX software, respectively. We then assembled the single plate and different double plates to the fracture model separately to form the fixation models. After meshing the models’ elements, we used the ABAQUS software to perform the finite element analysis. Values of the von Mises Stress (VMS) distribution of the implant, peak VMS, and model displacement and deformation were used to capture the mechanical factors in this study. Results. Our results indicated that the peak von Mises Stress (VMS) of the lateral plate was concentrated in middle surface of the lateral plate near the fragment of each group. The peak VMS was 5201.0 MPa (the single-plate construct), 3490.0 MPa (45° double-plate construct), 1754.0 MPa (90° double-plate construct), 1123.0 MPa (135° double-plate construct), and 816.5 MPa (180° double-plate construct). The additional short plate dispersed some stress leading to the decrease in the peak VMS of the lateral plate. As angle formed by the double plates increased, the dispersed function of the additional plate was becoming obvious. The bending angles of the lateral plate were 18° versus 12° versus 3° versus 2° versus 1° (the single-plate construct versus 45° double-plate construct versus 90° double-plate construct versus 135° double-plate construct versus 180° double-plate construct). Conclusions. Our study indicated that increasing the angle between the plates in a double-plate construct improves the stability of the construct over a single lateral plate when there is no cortical support opposite to the lateral plate. The strongest fixation occurred when the angle between the two plates was greater than ninety degrees. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23146133
Volume :
2018
Database :
Academic Search Index
Journal :
BioMed Research International
Publication Type :
Academic Journal
Accession number :
131000098
Full Text :
https://doi.org/10.1155/2018/3267107