Back to Search Start Over

AFe2O4/(Pb0.80Sr0.20)TiO3 (A = Mn, Ni and Co): a New Room-Temperature Magnetoelectric Multiferroic Bi-layered Composite Films.

Authors :
Bala, Kanchan
Kotnala, R. K.
Shah, Jyoti
Negi, N. S.
Source :
Journal of Superconductivity & Novel Magnetism. Sep2018, Vol. 31 Issue 9, p3007-3023. 17p.
Publication Year :
2018

Abstract

The room temperature and magnetic field-dependent dielectric, impedance and magnetoelectric (ME) coupling effect of polycrystalline AFe2O4/(Pb0.80Sr0.20)TiO3 (A = Mn, Ni and Co) bi-layered composite films have been investigated. The structural and microstructural analyses using the X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) reveal the presence of homogenous growth of both tetragonal and spinel phases without any extra phase and diffusion in the AFO/PST20 bi-layered composite films. Our results show that all composite films exhibit ferroelectric as well as considerable magnetic, indicating magnetoelectric coupling effect. Our results show that the dielectric and impedance properties of AFO/PST20 bi-layered composite films can be manipulated by the magnetic field at room temperature, also indicating the existence of magnetoelectric coupling. The impedance (Z′ and Z″) Nyquist plots show distinct electrical responses with the magnetic field. The maximum magnetoelectric coefficient (α) is found to be αME∼ 239 and ∼ 195 mV/cm/Oe for the MFO/PST20 and CFO/PST20 bi-layered composite films, respectively. The above results show that the AFO/PST20 bi-layered composite films are room-temperature multiferroic material that can be potentially used in magnetoelectric devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15571939
Volume :
31
Issue :
9
Database :
Academic Search Index
Journal :
Journal of Superconductivity & Novel Magnetism
Publication Type :
Academic Journal
Accession number :
131335959
Full Text :
https://doi.org/10.1007/s10948-018-4567-1