Back to Search Start Over

Realizing zinc-doping of CdS buffer layer via partial electrolyte treatment to improve the efficiency of Cu2ZnSnS4 solar cells.

Authors :
Gu, Youchen
Ye, Chen
Yin, Xuewen
Han, Jianhua
zhou, Yu
Shen, Heping
Li, Jianbao
Hao, Xiaojing
Lin, Hong
Source :
Chemical Engineering Journal. Nov2018, Vol. 351, p791-798. 8p.
Publication Year :
2018

Abstract

Cadmium sulfide (CdS) is the most widely used buffer material for a variety of thin-film solar cells including Cu 2 ZnSnS 4 . However, reports have shown that CdS film obtained by chemical bath deposition (CBD) is not the ideal buffer layer for pure sulfide CZTS solar cell. Zinc doping is a viable approach to modifying the CdS buffer film, but the present methods are far from satisfactory. Here, we innovatively developed an effective way of Zinc doping using partial electrolyte (PE) treatment, resulting in state-of-the-art buffer layer for solar cells based on high-surface-waviness CZTS light absorber. Our study shows that this Zn PE-treated CdS film improved the properties including coverage, full-range light transmittance and conduction band alignment with CZTS. Ultimately, the resultant modified CdS film boosted the open-circuit voltage of our devices by more than 100 mV, yielding power conversion efficiency (PCE) of 3.30%. We note that this is the highest efficiency that has been reported for all solution-processed CZTS solar cells. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13858947
Volume :
351
Database :
Academic Search Index
Journal :
Chemical Engineering Journal
Publication Type :
Academic Journal
Accession number :
131354476
Full Text :
https://doi.org/10.1016/j.cej.2018.06.134