Back to Search
Start Over
Tverberg Plus Minus.
- Source :
-
Discrete & Computational Geometry . Oct2018, Vol. 60 Issue 3, p588-598. 11p. - Publication Year :
- 2018
-
Abstract
- We prove a Tverberg type theorem: Given a set A⊂Rd<inline-graphic></inline-graphic> in general position with |A|=(r-1)(d+1)+1<inline-graphic></inline-graphic> and k∈{0,1,…,r-1}<inline-graphic></inline-graphic>, there is a partition of A into r sets A1,…,Ar<inline-graphic></inline-graphic> (where |Aj|≤d+1<inline-graphic></inline-graphic> for each j) with the following property. There is a unique z∈⋂j=1raffAj<inline-graphic></inline-graphic> and it can be written as an affine combination of the element in Aj<inline-graphic></inline-graphic>: z=∑x∈Ajα(x)x<inline-graphic></inline-graphic> for every j and exactly k of the coefficients α(x)<inline-graphic></inline-graphic> are negative. The case k=0<inline-graphic></inline-graphic> is Tverberg’s classical theorem. [ABSTRACT FROM AUTHOR]
- Subjects :
- *LINEAR equations
*COORDINATES
*INTEGERS
*ALGEBRAIC equations
*SET theory
Subjects
Details
- Language :
- English
- ISSN :
- 01795376
- Volume :
- 60
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Discrete & Computational Geometry
- Publication Type :
- Academic Journal
- Accession number :
- 131498417
- Full Text :
- https://doi.org/10.1007/s00454-017-9960-1