Back to Search Start Over

THE LARGE-N LIMIT WITH VANISHING LEADING ORDER CONDENSATE FOR ZERO PION MASS.

Authors :
MCLERRAN, LARRY
SKOKOV, VLADIMIR
Source :
Acta Physica Polonica B. 2018, Vol. 49 Issue 8, p1513-1530. 18p.
Publication Year :
2018

Abstract

It is conventionally assumed that the negative mass squared term in the linear sigma model version of the pion Lagrangian is M2 ~ Λ2QCD in powers of Nc. We consider the case where M2 ~ Λ2QCD=Nc so that to leading order in Nc, this symmetry breaking term vanishes. We present some arguments why this might be plausible. One might think that such a radical assumption would contradict lattice Monte Carlo data on QCD as a function of Nc. We show that the linear sigma model gives a fair description of the data of DeGrand and Liu both for Nc = 3 and for variable Nc. The values of quark masses considered by DeGrand and Liu, and by Bali et al. turn out to be too large to resolve the case we consider from that of the conventional large-Nc limit. We argue that for quark masses mq « ΛQCD/N3/2c , both the baryon mass and nucleon size scale as √Nc. For mq » ΛQCD/N3/2c , the conventional large-Nc counting holds. The physical values of quark masses for QCD (Nc = 3) correspond to the small quarkmass limit. We find pion nucleon coupling strengths are reduced to the order O(1) rather than O(Nc). Under the assumption that in the large-Nc limit, the sigma meson mass is larger than that of the omega, and that the omega-nucleon coupling constant is larger than that of the sigma, we argue that the nucleon-nucleon large-range potential is weakly attractive and admits an interaction energy of the order of ΛQCD=N5=2c ~ 10 MeV. With these assumptions on coupling and masses, there is no strong longrange attractive channel for nucleon-nucleon interactions, so that nuclear matter at densities much smaller than that where nucleons strongly interact is a weakly interacting configuration of nucleons with strongly interacting localized cores. This situation is unlike the case in the conventional large-Nc limit, where nuclear matter is bound with binding energies of the order of the nucleon mass and forms a Skyrme crystal. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
05874254
Volume :
49
Issue :
8
Database :
Academic Search Index
Journal :
Acta Physica Polonica B
Publication Type :
Academic Journal
Accession number :
131544096
Full Text :
https://doi.org/10.5506/APhysPolB.49.1513