Back to Search Start Over

Modeling and analysis of a viscoelastic micro-vibration isolation and mitigation platform for spacecraft.

Authors :
Xu, Chao
Xu, Zhao-Dong
Huang, Xing-Huai
Xu, Ye-Shou
Ge, Teng
Source :
Journal of Vibration & Control. Sep2018, Vol. 24 Issue 18, p4337-4352. 16p.
Publication Year :
2018

Abstract

A new viscoelastic micro-vibration isolation and mitigation platform is proposed to reduce disturbances generated by flywheels on board spacecraft. Firstly, property tests on the high-damping viscoelastic material used in the micro-vibration isolation and mitigation element are conducted. Experimental results show that the developed viscoelastic material has better energy dissipation capability under micro-vibration conditions. A mathematic model is employed to describe the dynamic properties of the high-damping viscoelastic material and is used to model the isolation and mitigation element. Secondly, a viscoelastic micro-vibration isolation and mitigation platform, which consists of four elements, is proposed and the analytical model of the coupled system that consists of the platform with flywheel is established. Finally, the isolation and mitigation performances of this micro-vibration isolation and mitigation platform are analyzed and discussed. The results show that the isolation and mitigation platform can effectively reduce the micro-vibration disturbances induced by the flywheel. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10775463
Volume :
24
Issue :
18
Database :
Academic Search Index
Journal :
Journal of Vibration & Control
Publication Type :
Academic Journal
Accession number :
131548355
Full Text :
https://doi.org/10.1177/1077546317724321