Back to Search Start Over

Sodium arsenite exposure inhibits histone acetyltransferase p300 for attenuating H3K27ac at enhancers in mouse embryonic fibroblast cells.

Authors :
Zhu, Yan
Li, Yanqiang
Lou, Dan
Gao, Yang
Yu, Jing
Kong, Dehui
Zhang, Qiang
Jia, Yankai
Zhang, Haimou
Wang, Zhibin
Source :
Toxicology & Applied Pharmacology. Oct2018, Vol. 357, p70-79. 10p.
Publication Year :
2018

Abstract

Abstract Both epidemiological investigations and animal studies have linked arsenic-contaminated water to cancers, including skin, liver and lung cancers. Besides genotoxicity, arsenic exposure-related pathogenesis of disease is widely considered through epigenetic mechanisms; however, the underlying mechanism remains to be determined. Herein we explore the initial epigenetic changes via acute sodium arsenite (As) exposures of mouse embryonic fibroblast (MEF) cells and histone H3K79 methyltransferase Dot1L knockout (Dot1L−/−) MEF cells. Our RNA-seq and Western blot data demonstrated that, in both cell lines, acute As exposure abolished histone acetyltransferase p300 at the RNA level and subsequent protein level. Consequently, p300-specific main target histone H3K27ac, a marker separating active from poised enhancers, decreased dramatically as validated by both Western blot and ChIP-qPCR/seq analyses. Concomitantly, H3K4me1 as another well-known marker for enhancers also showed significant decreases, suggesting an underappreciated crosstalk between H3K4me1 and H3K27ac involved in As exposure. Significantly, As exposure-reduced H3K27ac and H3K4me1 inhibited the expression of genes including EP300 itself and Kruppel Like Factor 4(Klf4) that both are tumor suppressor genes. Collectively, our investigations identified p300 as an internal bridging factor within cells to sense external environmental As exposure to alter chromatin, thereby changing gene transcription for disease pathogenesis. Highlights • Acuate arsenite exposure abolished histone acetyltransferase p300. • A crosstalk between H3K4me1 and H3K27ac involved in arsenite exposure. • Attenuated H3K27ac and H3K4me1 repressed the expression of tumor suppressor genes upon arsenite exposure. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0041008X
Volume :
357
Database :
Academic Search Index
Journal :
Toxicology & Applied Pharmacology
Publication Type :
Academic Journal
Accession number :
131767088
Full Text :
https://doi.org/10.1016/j.taap.2018.08.011