Back to Search Start Over

Analysis of Effective Capacity and Throughput of Polling-Based Device-To-Device Networks.

Authors :
Ismaiel, Bushra
Abolhasan, Mehran
Ni, Wei
Smith, David
Franklin, Daniel
Jamalipour, Abbas
Source :
IEEE Transactions on Vehicular Technology. Sep2018, Vol. 67 Issue 9, p8656-8666. 11p.
Publication Year :
2018

Abstract

Next-generation wireless networks will give rise to heterogeneous networks by integrating multiple wireless access technologies to provide seamless mobility to mobile users with high-speed wireless connectivity. Device-to-device (D2D) communication has proven to be a promising technology that can increase the capacity and coverage of wireless networks. The D2D communication was first introduced in long-term evolution advanced (LTE-A) and has gained immense popularity for the offloading traffic using the licensed and unlicensed band. Challenges arise from resource allocation, provision of quality-of-service (QoS), and the quantification of capacity in an unlicensed band due to the distributed nature of Wi-Fi. In this paper, we propose an analytical performance model for the scalable MAC protocol (SC-MP) in which a resource allocation mechanism is based on the IEEE 802.11 point coordinated function to access the Wi-Fi channel for voice and video/multimedia traffic. In the SC-MP, D2D communication is applied to further offload the video/multimedia traffic. In particular, this paper establishes a three-state semi-Markovian model to derive a closed-form expression of effective capacity in terms of transmission rate and quality-of-service. Further, the SC-MP is analytically modeled using the four-state traditional Markov model to derive the saturation throughput. The analytical results are validated through simulations, hence, proving the appropriateness of the model. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189545
Volume :
67
Issue :
9
Database :
Academic Search Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
131881198
Full Text :
https://doi.org/10.1109/TVT.2018.2840509