Back to Search Start Over

Treatment Technology of Hazardous Water Contaminated with Radioisotopes with Paper Sludge Ash-Based Geopolymer—Stabilization of Immobilization of Strontium and Cesium by Mixing Seawater.

Authors :
Li, Zhuguo
Nagashima, Mariko
Ikeda, Ko
Source :
Materials (1996-1944). Sep2018, Vol. 11 Issue 9, p1521. 1p. 7 Diagrams, 7 Charts, 1 Graph.
Publication Year :
2018

Abstract

Long-term immobilization ratios of strontium (Sr2+) and cesium (Cs+) in paper sludge ash-based geopolymer (PS-GP) were investigated in one year. PS-GP paste specimens were prepared in the conditions of 20 °C and 100% R.H., using two kinds of paper sludge ash (PS-ash). Two kinds of alkaline solution were used in the PS-GP as activator. One was prepared by diluting aqueous Na-disilicate (water glass) with seawater. Another was a mixture of this solution and caustic soda of 10 M concentration. When seawater was mixed into the alkaline solution, unstable fixations of Sr2+ and Cs+ were greatly improved, resulting stable and high immobilization ratios at any age up to one year, no matter what kind of PS-ash and alkaline solution were used. Element maps obtained by EPMA exhibited nearly even distribution of Cs+. However Sr2+ was biased, making domains so firmly related to Ca2+ presence. The mechanism that seawater stabilizes immobilization of Sr2+ and Cs+ was discussed in this study, but still needs to further investigation. Chemical composition analyses of PS-GP were also conducted by SEM-EDS. Two categories of GP matrix were clearly observed, so called N-A-S-H and C-A-S-H gels, respectively. By plotting in ternary diagrams of SiO2-(CaO + Na2O)-Al2O3 and Al2O3-CaO-Na2O, compositional trends were discussed in view of 'plagioclase gels' newly found in this study. As a result, it is suggested that the N-A-S-H and C-A-S-H gels should be strictly called Na-rich N-C-A-S-H and Ca-rich N-C-A-S-H gels, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
11
Issue :
9
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
131986013
Full Text :
https://doi.org/10.3390/ma11091521