Back to Search Start Over

Role of Kruppel homolog 1 (Kr-h1) in methyl farnesoate-mediated vitellogenesis in the swimming crab Portunus trituberculatus.

Authors :
Xie, Xi
Liu, Mingxin
Jiang, Qinghua
Zheng, Hongkun
Zheng, Liang
Zhu, Dongfa
Source :
Gene. Dec2018, Vol. 679, p260-265. 6p.
Publication Year :
2018

Abstract

Abstract Similar to the role of juvenile hormone (JH) in insects, methyl farnesoate (MF), the unepoxidized form of JH III, regulates many developmental processes in crustaceans, such as molting and reproduction. We have previously showed that the JH receptor, Methoprene-tolerant (Met), which is also a candidate receptor for MF, might be involved in the MF-mediated vitellogenesis in the swimming crab Portunus trituberculatus. In this study, the role of Kruppel homolog 1 (Kr-h1), a transcription factor downstream Met in JH signaling, was further investigated. The deduced protein of Pt-Kr-h1 contained seven repeats of zinc finger motifs, similar to Kr-h1s from other crustacean species, but differing from the eight zinc finger motifs found in insect Kr-h1s. MF treatment in vitro induced the expression of Pt-Kr-h1 in hepatopancreas but not ovary, which is similar to the MF-responsive pattern of Pt-Met as previously reported. Moreover, the expression of Pt-Kr-h1 decreased significantly after treating with Pt-Met dsRNA, strongly indicating that the Pt-Kr-h1 might be involved in the Met-mediated MF signaling pathway. RNAi of Pt-Met and Pt-Kr-h1 both led to a decrease in vitellogenin (Vg) expression, and the reduction cannot be rescued by adding MF, suggesting the regulation of vitellogenesis by MF may act through Met and Kr-h1. These results would help to enhance the current understanding of the regulatory mechanism of MF signaling, and provide a vital resource for further research into the evolution of hormonal pathways in arthropods. Highlights • Seven zinc finger motifs may be a common characteristic for crustacean Kr-h1s. • Kr-h1 is a MF-induced gene in P. trituberculatus. • MF may stimulate the exogenous vitellogenesis through Met and Kr-h1. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03781119
Volume :
679
Database :
Academic Search Index
Journal :
Gene
Publication Type :
Academic Journal
Accession number :
132288486
Full Text :
https://doi.org/10.1016/j.gene.2018.08.046