Back to Search Start Over

Direction-of-Arrival Estimation for Coprime Array via Virtual Array Interpolation.

Authors :
Zhou, Chengwei
Gu, Yujie
Fan, Xing
Shi, Zhiguo
Mao, Guoqiang
Zhang, Yimin D.
Source :
IEEE Transactions on Signal Processing. 11/15/2018, Vol. 66 Issue 22, p5956-5971. 16p.
Publication Year :
2018

Abstract

Coprime arrays can achieve an increased number of degrees of freedom by deriving the equivalent signals of a virtual array. However, most existing methods fail to utilize all information received by the coprime array due to the non-uniformity of the derived virtual array, resulting in an inevitable estimation performance loss. To address this issue, we propose a novel virtual array interpolation-based algorithm for coprime array direction-of-arrival (DOA) estimation in this paper. The idea of array interpolation is employed to construct a virtual uniform linear array such that all virtual sensors in the non-uniform virtual array can be utilized, based on which the atomic norm of the second-order virtual array signals is defined. By investigating the properties of virtual domain atomic norm, it is proved that the covariance matrix of the interpolated virtual array is related to the virtual measurements under the Hermitian positive semi-definite Toeplitz condition. Accordingly, an atomic norm minimization problem with respect to the equivalent virtual measurement vector is formulated to reconstruct the interpolated virtual array covariance matrix in a gridless manner, where the reconstructed covariance matrix enables off-grid DOA estimation. Simulation results demonstrate the performance advantages of the proposed DOA estimation algorithm for coprime arrays. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1053587X
Volume :
66
Issue :
22
Database :
Academic Search Index
Journal :
IEEE Transactions on Signal Processing
Publication Type :
Academic Journal
Accession number :
132684049
Full Text :
https://doi.org/10.1109/TSP.2018.2872012