Back to Search Start Over

Comprehensive Predictive Device Modeling and Analysis of a Si/Si1-xGex Multiquantum-Well Detector.

Authors :
Shafique, Atia
Abbasi, Shahbaz
Ceylan, Omer
Yamamoto, Yuji
Baristiran Kaynak, Canan
Kaynak, Mehmet
Gurbuz, Yasar
Source :
IEEE Transactions on Electron Devices. Oct2018, Vol. 65 Issue 10, p4353-4361. 9p.
Publication Year :
2018

Abstract

This paper presents a predictive device model implemented by a self-consistent solution of Poisson–Schrödinger drift-diffusion formulation for a thermally sensitive detector based on a ${\mathrm {Si/Si}}_{{1}-{x}}{\mathrm {Ge}}_{{x}}$ multiquantum-well structure. The physical phenomena governing the carrier transport were modeled to investigate the effect of physical design aspects (Ge content, well periodicity, and well thickness). In particular, we have analyzed the effect of these physical design parameters on the carrier dynamics quantified by the dc performance in terms of net current density. A fully integrated simulation framework was developed and employed to optimize Ge content and device doping for a desired figure of merits specified by temperature coefficient of resistance (TCR) and dc resistance (${R}$). This methodology was successfully utilized to realize device profiles for various amounts of Ge content and optimization of (${R}$) geared for both high TCR and low noise. The dc performance metrics of the optimized profiles obtained by modeling presented here are compared and validated with the fabricated test devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189383
Volume :
65
Issue :
10
Database :
Academic Search Index
Journal :
IEEE Transactions on Electron Devices
Publication Type :
Academic Journal
Accession number :
132684528
Full Text :
https://doi.org/10.1109/TED.2018.2862419