Back to Search Start Over

Cracking Processes and Coalescence Modes in Rock-Like Specimens with Two Parallel Pre-existing Cracks.

Authors :
Zhao, Cheng
Zhou, Yi meng
Zhao, Chun feng
Bao, Chong
Source :
Rock Mechanics & Rock Engineering. Nov2018, Vol. 51 Issue 11, p3377-3393. 17p.
Publication Year :
2018

Abstract

The cracks in a rock tend to initiate, propagate, and coalesce under loading. Based on the digital image correlation (DIC) method, uniaxial compression tests are carried out on rock-like specimens with various arrangements of two parallel cracks. The full-field strain and failure features of the rock-like materials are observed and analysis by a self-developed code. Two process zones are defined according to the differences between the shear strain field and the tensile strain field: a shear process zone and a tensile process zone. The following results are obtained in this study. (1) Three coalescence modes can be observed using the DIC method: a shear coalescence mode, a tensile coalescence mode, and a mixed coalescence mode. (2) At the microscopic level, the bridge angle and crack arrangement affect the formation of the process zone; at the macroscopic level, they determine the crack propagation path and the failure mode. (3) The peak strength of the rock-like specimen is related to the crack inclination angle and the bridge angle. (4) Numerical modeling by the expanded distinct element method and the strain strength criterion simulates the different coalescence modes of the experimental study efficiently. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07232632
Volume :
51
Issue :
11
Database :
Academic Search Index
Journal :
Rock Mechanics & Rock Engineering
Publication Type :
Academic Journal
Accession number :
132695591
Full Text :
https://doi.org/10.1007/s00603-018-1525-y