Back to Search Start Over

Forecasting-Based Power Ramp-Rate Control Strategies for Utility-Scale PV Systems.

Authors :
Chen, Xiaoyang
Du, Yang
Wen, Huiqing
Jiang, Lin
Xiao, Weidong
Source :
IEEE Transactions on Industrial Electronics. Mar2019, Vol. 66 Issue 3, p1862-1871. 10p.
Publication Year :
2019

Abstract

Passing cloud results in rapid changes of irradiance. The intermittency of photovoltaic (PV) power output has drawn serious concern especially for utility-scale PV system. Consequently, power ramp-rate control (PRRC) has been introduced to avoid significant PV power fluctuations. PRRC is usually implemented either by curtailing active power output or implementing energy storage system (ESS). However, current active power curtailment cannot deal with the irradiance ramp-down fluctuations, and the high cost of the ESS is still hindering its extensive application. In this paper, two innovative PRRC strategies are presented, which utilize the short-term forecasting. The first solution does not require any ESS, during the power ramp-down event, the PV generation will be curtailed before the actual shading occurs. The second solution requires only one-quarter of the energy capacity of the conventional ESS control strategy. To provide the PV generation forecasts, a dynamic model based on spatio-temporal theory is formulated. The effectiveness of the proposed forecasting model and control strategies have been verified through experiment and case studies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780046
Volume :
66
Issue :
3
Database :
Academic Search Index
Journal :
IEEE Transactions on Industrial Electronics
Publication Type :
Academic Journal
Accession number :
132807567
Full Text :
https://doi.org/10.1109/TIE.2018.2840490