Back to Search Start Over

Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain.

Authors :
Krois, Alexander S.
Dyson, H. Jane
Wright, Peter E.
Source :
Proceedings of the National Academy of Sciences of the United States of America. 11/27/2018, Vol. 115 Issue 48, pE11302-E11310. 9p.
Publication Year :
2018

Abstract

Atomic resolution characterization of the full-length p53 tetramer has been hampered by its size and the presence of extensive intrinsically disordered regions at both the N and C termini. As a consequence, the structural characteristics and dynamics of the disordered regions are poorly understood within the context of the intact p53 tetramer. Here we apply trans-intein splicing to generate segmentally 15N-labeled full-length p53 constructs in which only the resonances of the N-terminal transactivation domain (NTAD) are visible in NMR spectra, allowing us to observe this region of p53 with unprecedented detail within the tetramer. The N-terminal region is dynamically disordered in the full-length p53 tetramer, fluctuating between states in which it is free and fully exposed to solvent and states in which it makes transient contacts with the DNA-binding domain (DBD). Chemical-shift changes and paramagnetic spin-labeling experiments reveal that the amphipathic AD1 and AD2 motifs of the NTAD interact with the DNA-binding surface of the DBD through primarily electrostatic interactions. Importantly, this interaction inhibits binding of nonspecific DNA to the DBD while having no effect on binding to a specific p53 recognition element. We conclude that the NTAD: DBD interaction functions to enhance selectivity toward target genes by inhibiting binding to nonspecific sites in genomic DNA. This work provides some of the highest-resolution data on the disordered N terminus of the nearly 180-kDa full-length p53 tetramer and demonstrates a regulatory mechanism by which the N terminus of p53 transiently interacts with the DBD to enhance target site discrimination. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
115
Issue :
48
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
133315054
Full Text :
https://doi.org/10.1073/pnas.1814051115