Back to Search Start Over

PSP-producing dinoflagellate Alexandrium minutum induces valve microclosures in the mussel Mytilus galloprovincialis.

Authors :
Comeau, Luc A.
Babarro, Jose M.F.
Riobó, Pilar
Scarratt, Michael
Starr, Michel
Tremblay, Réjean
Source :
Aquaculture. Feb2019, Vol. 500, p407-413. 7p.
Publication Year :
2019

Abstract

Abstract The saxitoxin-producing dinoflagellate Alexandrium minutum is a well-known microalga that causes paralytic shellfish poisoning (PSP) in many coastal regions of the world. In this study, we measured the valve movements of cultivated mussels Mytilus galloprovincialis feeding on toxic A. minutum (n = 29 mussels, shell length = 67.1 ± 3.2 mm, x̅ ± SD) or a morphologically-similar, but toxin-free phytoplankton, Heterocapsa triquetra (n = 24 mussels, shell length = 68.3 ± 2.9 mm). Phytoplankton inoculations were conducted in three sequential "pulses" intended to increase microalgal cell concentrations in a stepwise manner up to ~5000 cells l−1 over a 9-h period. M. galloprovincialis was connected to a non-invasive valvometry apparatus that concurrently measured the magnitude of valve openness once every 0.1 s. It was found that M. galloprovincialis tended to keep its valves open over the course of the experiment, regardless of the phytoplankton species present in water. Standard valve opening metrics, such as the opening duration and opening amplitude, were not significantly affected by the species of phytoplankton. However, the frequency of brief and partial valve closures (microclosures) was significantly influenced by phytoplankton species (P <.01). M. galloprovincialis subjected to toxic A. minutum exhibited 20.3 ± 0.4 (x̅ ± SEM) microclosures per 3-h pulse period, whereas those exposed to the control H. triquetra exhibited 7.9 ± 0.4 (x̅ ± SEM) microclosures. This response was detectable over the 3 h following the first inoculation pulse that provided a phytoplankton concentration of 1000 cells l−1. Our findings are consistent with growing evidence that bivalves are sensitive to very low concentrations of harmful microalgae. Deploying in situ valvometry sensors with real-time monitoring capabilities may provide an early warning of harmful algal blooms. Highlights • The behavioral response of mussels to toxic Alexandrium minutum was assessed. • Valve microclosures were more frequent in the presence of these toxic cells. • The response was manifested within 3 h at low cell concentrations. • The response might serve as an early warning of toxic A. minutum proliferations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448486
Volume :
500
Database :
Academic Search Index
Journal :
Aquaculture
Publication Type :
Academic Journal
Accession number :
133425925
Full Text :
https://doi.org/10.1016/j.aquaculture.2018.10.025