Back to Search Start Over

Establishment of a Mouse Model of Premature Ovarian Failure Using Consecutive Superovulation.

Authors :
Nie, Xiaowei
Dai, Youjin
Zheng, Yuan
Bao, Dan
Chen, Qin
Yin, Yuan
Fu, Heling
Hou, Daorong
Source :
Cellular Physiology & Biochemistry (Karger AG). Dec2018, Vol. 51 Issue 5, p2341-2358. 18p.
Publication Year :
2018

Abstract

Background/Aims: This study investigated the effect of consecutive superovulation on the ovaries and established a premature ovarian failure (POF) model in mice. Methods: The mouse POF model was induced by 5-15 consecutive superovulation treatments with pregnant mare serum gonadotropin (PMSG), human chorionic gonadotropin (HCG) and prostaglandin F2α (PGF2α). Normal adult mice were compared with mice displaying natural ovarian aging. The following serum biochemical parameters were measured: including follicle-stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P), estradiol (E2), inhibin B (INH B), malondialdehyde (MDA), total superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. Follicles were counted using H&E staining. Levels of 8-hydroxyguanosine (8-OhdG), 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), anti-Mullerian hormone (AMH) and CDKN2A/ p16 (p16) were detected using immunohistochemical staining. Reactive oxygen species (ROS) levels were measured using dihydroethidium (DHE) staining. Cell apoptosis was detected using an in situ TUNEL fluorescence staining assay. Levels of proteins involved in ROS-related pathways and the p16 protein were detected using Western blotting. Sod1, Sod2 and Sod3 mRNA levels were detected using quantitative polymerase chain reaction (Q-PCR). Oocyte quality was evaluated using in vitro fertilization (IVF) and zygote culture. Results: Consecutive superovulation groups presented lower P, E2, SOD, GSH-Px and INH B levels, significantly higher FSH, LH, MDA and ROS levels, and significantly fewer primordial follicles compared with the control group. Consecutive superovulation groups presented significantly increased levels of Sod2, 8-OhdG, 4-HNE, NTY, significantly increased levels of the SIRT1 and FOXO1 proteins, significantly increased levels of the senescence-associated protein p16, as well as decreased AMH, Sod1 and Sod3 levels and increased granulosa cell apoptosis compared with the control group. Conclusion: Consecutive superovulation significantly decreased ovarian function and oocyte quality and increased oxidative stress and apoptosis in the ovary via a mechanism involving the p16 and SIRT1/FOXO1 signaling pathways. These findings suggest that consecutive superovulation may be used to establish a mouse model of ovarian aging. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10158987
Volume :
51
Issue :
5
Database :
Academic Search Index
Journal :
Cellular Physiology & Biochemistry (Karger AG)
Publication Type :
Academic Journal
Accession number :
133598733
Full Text :
https://doi.org/10.1159/000495895