Back to Search Start Over

Modelling the changes in viscosity during thermal treatment of milk protein concentrate using kinetic data.

Authors :
Ho, Quang Tri
Murphy, Kevin M.
Drapala, Kamil P.
Fenelon, Mark A.
O'Mahony, James A.
Tobin, John T.
McCarthy, Noel A.
Source :
Journal of Food Engineering. Apr2019, Vol. 246, p179-191. 13p.
Publication Year :
2019

Abstract

Abstract This work aimed to model the effect of heat treatment on viscosity of milk protein concentrate (MPC) using kinetic data. MPC obtained after ultrafiltration was subjected to different time-temperature heat treatment combinations. Heat treatment at high temperature and short time (i.e., 100 or 120 °C×30 s) led to a significant increase in viscosity in MPC systems. Second-order reaction kinetic models proved a better fit than zero- or first-order models when fitted for viscosity response to heat treatment. A distinct deviation in the slope of the Arrhenius plot at 77.9 °C correlated to a significant increase in the rate of viscosity development at temperatures above this, confirming the transition of protein denaturation from the unfolding to the aggregation stage. This study demonstrated that heat-induced viscosity of MPC as a result of protein denaturation/aggregation can be successfully modelled in response to thermal treatment, providing useful new information in predicting the effect of thermal treatment on viscosity of MPC. Highlights • Heat treatment (≥75 °C) caused a significant increase in viscosity of MPC. • A model was developed to describe the effect of heat treatment on MPC viscosity. • Second-order kinetics proved a good fit for viscosity response to heat treatment. • The Arrhenius plot showed the transition from protein unfolding to aggregation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02608774
Volume :
246
Database :
Academic Search Index
Journal :
Journal of Food Engineering
Publication Type :
Academic Journal
Accession number :
133623199
Full Text :
https://doi.org/10.1016/j.jfoodeng.2018.10.026