Back to Search Start Over

Granite micro-porosity changes due to fracturing and alteration: secondary mineral phases as proxies for porosity and permeability estimation.

Authors :
Staněk, Martin
Géraud, Yves
Source :
Solid Earth Discussions. 2018, p1-38. 38p.
Publication Year :
2018

Abstract

Several alteration facies of fractured Lipnice granite are studied in detail on borehole samples by means of mercury intrusion porosimetry, polarized and fluorescent light microscopy and microprobe chemical analyses. The goal is to describe the granite void space geometry in vicinity of fractures with alteration halos and to link specific geometries with simply detectable parameters to facilitate quick estimation of porosity and permeability based on e.g. drill cuttings. The core of the study are results of porosity and throat size distribution analyses on 21 specimens representing unique combinations of fracture-related structures within 6 different alteration facies basically differing in secondary phyllosilicate chemistry and porosity structure. Based on a simple model to calculate permeability from the measured porosities and throat size distributions the difference in permeability between the fresh granite and the most fractured and altered granite is 5 orders of magnitude. Our observations suggest that the porosity, the size of connections and the proportion of crack porosity increase with fracture density, while precipitation of iron-rich infills as well as of fine grained secondary phyllosilicates acts in the opposite way. Different styles and intensities of such end-member agents shape the final void space geometry and imply various combinations of storage, transport and retardation capacity for specific structures. The study also shows the possibility to use the standard mercury intrusion porosimetry with advanced experimental setting and data treatment to distinguish important differences in void space geometry within a span of few per cent of porosity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18699537
Database :
Academic Search Index
Journal :
Solid Earth Discussions
Publication Type :
Academic Journal
Accession number :
133807096
Full Text :
https://doi.org/10.5194/se-2018-107