Back to Search Start Over

Design Guidelines to Avoid Bifurcation in a Series–Series Compensated Inductive Power Transfer System.

Authors :
Aditya, Kunwar
Williamson, Sheldon S.
Source :
IEEE Transactions on Industrial Electronics. May2019, Vol. 66 Issue 5, p3973-3982. 10p.
Publication Year :
2019

Abstract

Resonant inductive power transfer (RIPT) is gaining in popularity for wireless charging applications of future electric transportation. A fundamental impediment to the efficient operation of an RIPT system is the existence of bifurcation phenomenon in a doubly tuned circuit. Bifurcation can be avoided by either selecting complicated control strategies or by proper design strategies. Many control strategies have been presented in the literature for avoiding bifurcation. However, systematic design strategies for avoiding bifurcation are still unknown. This paper presents a simplified, and easy to follow set of design guidelines for series–series compensated RIPT (SS-RIPT) systems. The design guidelines avoid bifurcation by calculating the parameters for a given load profile in a systematic and easy to follow approach. Following the design guidelines, a 3.6-kW setup has been fabricated as an example and verified using a finite element analysis as well as experimental testing. Selection of a resonant frequency and output voltage for 3.6 kW was influenced by the availability of testing equipment available in the lab. However, the design guidelines are generalized, and by following it, an SS-RIPT system of any frequency and output voltage rating, applicable for EV charging, can be designed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780046
Volume :
66
Issue :
5
Database :
Academic Search Index
Journal :
IEEE Transactions on Industrial Electronics
Publication Type :
Academic Journal
Accession number :
133875985
Full Text :
https://doi.org/10.1109/TIE.2018.2851953