Back to Search Start Over

VLSI Design of an Efficient Flicker-Free Video Defogging Method for Real-Time Applications.

Authors :
Shiau, Yeu-Horng
Kuo, Yao-Tsung
Chen, Pei-Yin
Hsu, Feng-Yuan
Source :
IEEE Transactions on Circuits & Systems for Video Technology. Jan2019, Vol. 29 Issue 1, p238-251. 14p.
Publication Year :
2019

Abstract

Defogging is an essential preprocessing technique for object detection in computer vision-based systems and has been widely used in outdoor surveillance system applications. This paper proposes an efficient defogging algorithm for both static images and videos. Considering real-time applications, the proposed defogging algorithm involves a low-cost hardware oriented design that is based on an atmospheric scattering model and dark channel prior. Compared with previous low-complexity techniques, simulation results indicated that the proposed design demonstrated superior performance in terms of quantitative and qualitative evaluations. A weighting technique and a contour preserving estimation approach are adopted alternately to refine the factors in the defogging process. Furthermore, in the atmospheric light estimation, an adjuster is applied to the video for preventing “flicker” which means that the brightness changes dramatically between two neighbor frames in the video. Hence, the proposed algorithm is suitable for video defogging applications, which have not been dealt with in previous approaches. To achieve the requirement of real-time applications for both static and dynamic images, an implementation of seven-stage very-large-scale integration architecture for the proposed algorithm is presented. By using TSMC 0.13- $\mu {\mathrm{ m}}$ technology, the design yielded a processing rate of approximately 200 Mpixels/s. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10518215
Volume :
29
Issue :
1
Database :
Academic Search Index
Journal :
IEEE Transactions on Circuits & Systems for Video Technology
Publication Type :
Academic Journal
Accession number :
134019922
Full Text :
https://doi.org/10.1109/TCSVT.2017.2777140