Back to Search Start Over

Numerical study of atomic scale deformation mechanisms of Ti grains with different crystallographic orientation subjected to scratch testing.

Authors :
Dmitriev, Andrey I.
Nikonov, Anton Yu.
Shugurov, Artur R.
Panin, Alexey V.
Source :
Applied Surface Science. Mar2019, Vol. 471, p318-327. 10p.
Publication Year :
2019

Abstract

Graphical abstract Highlights • Staged evolution of dislocation structure in Ti crystallite subjected to scratching. • Mechanical response of Ti crystallites is governed by material fragmentation ahead of indenter. • Grain boundaries provide to rotational deformation and fragmentation of the material. Abstract Atomic scale deformation mechanisms of Ti single- and bicrystals subjected to scratch testing were studied experimentally and using molecular dynamics simulation. The numerical model explicitly considers the crystallographic orientation of Ti crystallites experimentally determined from EBSD analysis. The stage character of the evolution of dislocation structure in the Ti crystallites under loading was revealed that resulted from fragmentation of the material in the scratch groove. When the direction of easy dislocation glide is close to the scratching direction, the stages of generation and movement of dislocations alternate with the stages of dislocation pinning. It was found experimentally that the initially softer grain was characterized by a shallower residual scratch depth than the originally harder one. MD simulation revealed that the fragmentation is an origin of the observed disagreement between the residual scratch depth and the initial hardness of Ti grains with different crystallographic orientations. Grain boundaries were shown not only to be barriers for dislocation glide but also to favor the development of rotational deformation and further fragmentation of the material in the scratch groove. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01694332
Volume :
471
Database :
Academic Search Index
Journal :
Applied Surface Science
Publication Type :
Academic Journal
Accession number :
134068536
Full Text :
https://doi.org/10.1016/j.apsusc.2018.12.021