Back to Search
Start Over
Small pelagic fish dynamics: A review of mechanisms in the Gulf of Lions.
- Source :
-
Deep-Sea Research Part II, Topical Studies in Oceanography . Jan2019, Vol. 159, p52-61. 10p. - Publication Year :
- 2019
-
Abstract
- Abstract Around 2008, an ecosystem shift occurred in the Gulf of Lions, highlighted by considerable changes in biomass and fish mean weight of its two main small pelagic fish stocks (European anchovy, Engraulis encrasicolus ; European sardine, Sardina pilchardus). Surprisingly these changes did not appear to be mediated by a decrease in fish recruitment rates (which remained high) or by a high fishing pressure (exploitation rates being extremely low). Here, we review the current knowledge on the population's dynamics and its potential causes. We used an integrative ecosystem approach exploring alternative hypotheses, ranging from bottom-up to top-down control, not forgetting epizootic diseases. First, the study of multiple population characteristics highlighted a decrease in body condition for both species as well as an important decrease in size resulting from both a slower growth and a progressive disappearance of older sardines. Interestingly, older sardines were more affected by the decrease in condition than younger ones, another sign of an unbalanced population structure. While top-down control by bluefin tuna or dolphins, emigration and disease were mostly discarded as important drivers, bottom-up control mediated by potential changes in the plankton community appeared to play an important role via a decrease in fish energy income and hence growth, condition and size. Isotopic and stomach content analyses indicated a dietary shift pre- and post-2008 and modeled mesozooplankton abundance was directly linked to fish condition. Despite low energy reserves from 2008 onwards, sardines and anchovies maintained if not increased their reproductive investment, likely altering the life-history trade-off between reproduction and survival and resulting in higher natural mortality. The current worrying situation might thus have resulted from changes in plankton availability/diversity, which remains to be thoroughly investigated together with fish phenotypic plasticity. [ABSTRACT FROM AUTHOR]
- Subjects :
- *ECOSYSTEMS
*BIOMASS
*SARDINE fisheries
*SARDINES
*FISHERIES
Subjects
Details
- Language :
- English
- ISSN :
- 09670645
- Volume :
- 159
- Database :
- Academic Search Index
- Journal :
- Deep-Sea Research Part II, Topical Studies in Oceanography
- Publication Type :
- Academic Journal
- Accession number :
- 134227212
- Full Text :
- https://doi.org/10.1016/j.dsr2.2018.02.010