Back to Search Start Over

Numerical Investigation of the Gas Flow Effects on Surface Wave Propagation and Discharge Properties in a Microwave Plasma Torch.

Authors :
Zhang, Wencong
Wu, Li
Tao, Junwu
Huang, Kama
Source :
IEEE Transactions on Plasma Science. Jan2019, Vol. 47 Issue 1, p271-277. 7p.
Publication Year :
2019

Abstract

Gas flow plays an important role in determining the discharge properties in microwave plasma torches sustained by the propagating surface wave. This paper aims to investigate the gas flow effects on the plasma column length, the surface wave propagation, and the heavy species temperature in a surface wave plasma torch operated at atmospheric pressure. The steady-state discharges of pure argon gas at atmospheric pressure under different gas inflow rates in the plasma torch are characterized by an improved 2-D axisymmetric fluid model. The obtained results demonstrate that increasing the gas inflow rate is able to decrease the surface wave propagation distance, accelerating the contraction of the plasma column length. The discharge instability is found to be motivated by the disappearance of the sustaining surface wave at high gas inflow rates. Besides, a temperature drop of about 64 °C is observed at the temperature-maximum point of the glass tube with an increase in the gas inflow rate from 1 to $16\,\,\text {L}\cdot \text {min}^{-1}$. Therefore, for the surface wave plasma torch operated with only the axial gas flow, increasing the gas inflow rate cannot solve the glass overheating problem. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00933813
Volume :
47
Issue :
1
Database :
Academic Search Index
Journal :
IEEE Transactions on Plasma Science
Publication Type :
Academic Journal
Accession number :
134552266
Full Text :
https://doi.org/10.1109/TPS.2018.2882637