Back to Search Start Over

Modelling greenhouse gas emissions and mitigation potentials in fertilized paddy rice fields in Bangladesh.

Authors :
Begum, Khadiza
Kuhnert, Matthias
Yeluripati, Jagadeesh B.
Ogle, Stephen M.
Parton, William J.
Williams, Stephen A.
Pan, Genxing
Cheng, Kun
Ali, Muhammad A.
Smith, Pete
Source :
Geoderma. May2019, Vol. 341, p206-215. 10p.
Publication Year :
2019

Abstract

Abstract Emissions of greenhouse gases (GHG) from paddy rice are significant, so reducing these emissions has significant potential for climate change mitigation. We investigated alternate wetting and drying (AWD) as part of an integrated management approach to enhance mitigation, together with combinations of mineral nitrogen (N), reduced tillage, a suitable combination of plant residues and well decomposed manure. To quantify GHG emissions, and the potential for mitigation without yield decline, a process-based model, DayCent was used to simulate methane (CH 4) and nitrous oxide (N 2 O) emissions from paddy rice (Oryza sativa L.) in Bangladesh. The four test sites selected were amended with mineral N fertilizer or an organic amendment (rice straw). A good agreement (p < 0.05) was observed between model simulated and measured daily CH 4 flux at most of these test sites with no significant bias. The seasonal CH 4 emission from a site receiving mineral N fertilizer at a rate of 110 kg N ha−1 was predicted by the model to be 210 and 150 kg ha−1 for the water management scenarios of continuous flood (CF) and AWD, respectively. These values compare well with estimates of CH 4 emissions using Intergovernmental Panel on Climate Change tier 1 methods for the different water regimes. Our model results suggest emission factors for N 2 O of 0.4% and 0.6% of applied fertilizer under CF and AWD water regimes, respectively. Based on modelling studies, AWD was found to be an important strategy not only with respect to reducing GHG emissions, but also in terms of cost effectiveness. We also found that integrated management is a promising option for farmers and policy makers interested in either yield increase, GHG mitigation or both. Yield scaled emissions intensity under AWD was found to be about 24% lower than under CF, followed by integrated management. Highlights • Greenhouse gas (GHG) emissions from rice were simulated with the DayCent model. • DayCent simulates methane and nitrous oxide emissions well in paddy rice. • Alternate wet and drying is the most effective mitigation option to mitigate GHGs. • Integrated management is promising for increasing yield and for GHG mitigation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00167061
Volume :
341
Database :
Academic Search Index
Journal :
Geoderma
Publication Type :
Academic Journal
Accession number :
134596253
Full Text :
https://doi.org/10.1016/j.geoderma.2019.01.047