Back to Search Start Over

Electronic ground state analysis of Eu(II)-doped alkali-earth sulfide phosphors for photoluminescence properties.

Authors :
Nakano, Hiroshi
Oh-e, Masahito
Source :
Journal of Applied Physics. 2019, Vol. 125 Issue 7, pN.PAG-N.PAG. 9p. 4 Diagrams, 2 Charts, 2 Graphs.
Publication Year :
2019

Abstract

Theoretically probing the physics underlying the photoluminescence of phosphors and predicting their thermal quenching properties are significant issues in the field of phosphor research. The electronic ground states of a series of Eu(II)-doped alkali-earth sulfide phosphors, i.e., MS:Eu2+ (M = Mg, Ca, Sr, Ba), have been analyzed using density functional theory calculations to characterize and analyze their photoluminescence properties in terms of quantum efficiency and its thermal decay tendency. Anderson's impurity model to MS:Eu2+ enables devising a physical picture of how the electronic ground states | ψ Eu − 5 d ⟩ representing the Eu(II)-5d orbitals are mixed with those of the conduction bands (CBs) of host materials. The focus is on quantitatively deducing the electron delocalization nature of | ψ Eu − 5 d ⟩ over |CB〉, especially ∑ k | ψ k M − d k ⟩ , which represents the bands formed by the d orbitals of M atoms. The ratio of the probability amplitudes of | ψ Eu − 5 d ⟩ and ∑ k | ψ k M − d k ⟩ , i.e., C Eu − 5 d / C M − d , proves to be correlated with the electron localization nature of | ψ Eu − 5 d ⟩ , thereby suggesting that this ratio can be an effective parameter for evaluating the thermal quenching tendency of photoluminescence without more precise information on the electronic excited states. Energetically small gaps and large spatial overlaps between | ψ Eu − 5 d ⟩ and |CB〉 delocalize electrons in a hybridized state, which gives these electrons the tendency to dissipate without luminescence. The results explain the rankings of the quantum yield and its temperature dependence in the MS:Eu2+ (M = Ca, Sr, Ba) systems, which follow the Dorenbos thermal quenching model, while MgS:Eu2+ does not have the same mechanistic origin. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
125
Issue :
7
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
134866666
Full Text :
https://doi.org/10.1063/1.5059371