Back to Search Start Over

Mannitol decreases neocortical epileptiform activity during early brain development via cotransport of chloride and water.

Authors :
Glykys, J.
Duquette, E.
Rahmati, N.
Duquette, K.
Staley, K.J.
Source :
Neurobiology of Disease. May2019, Vol. 125, p163-175. 13p.
Publication Year :
2019

Abstract

Abstract Seizures and brain injury lead to water and Cl− accumulation in neurons. The increase in intraneuronal Cl− concentration ([Cl−] i) depolarizes the GABA A reversal potential (E GABA) and worsens seizure activity. Neocortical neuronal membranes have a low water permeability due to the lack of aquaporins necessary to move free water. Instead, neurons use cotransport of ions including Cl− to move water. Thus, increasing the extracellular osmolarity during seizures should result in an outward movement of water and salt, reducing [Cl−] i and improving GABA A receptor-mediated inhibition. We tested the effects of hyperosmotic therapy with a clinically relevant dose of mannitol (20 mM) on epileptiform activity, spontaneous multiunit activity, spontaneous inhibitory post-synaptic currents (sIPSCs), [Cl−] i , and neuronal volume in layer IV/V of the developing neocortex of C57BL/6 and Clomeleon mice. Using electrophysiological techniques and multiphoton imaging in acute brain slices (post-natal day 7–12) and organotypic neocortical slice cultures (post-natal day 14), we observed that mannitol: 1) decreased epileptiform activity, 2) decreased neuronal volume and [Cl−] i through CCCs, 3) decreased spontaneous multi-unit activity frequency but not amplitude, and 4) restored the anticonvulsant efficacy of the GABA A receptor modulator diazepam. Increasing extracellular osmolarity by 20 mOsm with hypertonic saline did not decrease epileptiform activity. We conclude that an increase in extracellular osmolarity by mannitol mediates the efflux of [Cl−] i and water through CCCs, which results in a decrease in epileptiform activity and enhances benzodiazepine actions in the developing neocortex in vitro. Novel treatments aimed to decrease neuronal volume may concomitantly decrease [Cl−] i and improve seizure control. Graphical abstract Unlabelled Image Highlights • Mannitol reduces neuronal volume and [Cl−] i in neurons with high initial [Cl−] i. • Chloride co-transporters primarily mediate the linked movement of water and Cl− out of neurons. • Mannitol decreases neocortical seizure activity during early brain development. • Mannitol potentiates the anticonvulsive effect of diazepam in the young neocortex. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09699961
Volume :
125
Database :
Academic Search Index
Journal :
Neurobiology of Disease
Publication Type :
Academic Journal
Accession number :
135015165
Full Text :
https://doi.org/10.1016/j.nbd.2019.01.024