Back to Search Start Over

BML-111 accelerates the resolution of inflammation by modulating the Nrf2/HO-1 and NF-κB pathways in rats with ventilator-induced lung injury.

Authors :
Xu, Jiqian
Li, Hong-bin
Chen, Lin
Wang, Ya-Xin
Lu, Shengzhong
Li, Sheng-nan
Cui, Shu-nan
Xiao, Hai-Rong
Qin, Lu
Hu, Houxiang
Yao, Shanglong
Shang, You
Source :
International Immunopharmacology. Apr2019, Vol. 69, p289-298. 10p.
Publication Year :
2019

Abstract

Abstract The timely resolution of pulmonary inflammation coordinated by endogenous pro-resolving mediators helps limit lung tissue injury, but few endogenous pro-resolving mediators that are normally operative during acute inflammation. The protective effects of BML-111 (5(S)-6(R)-7-trihydroxyheptanoic acid methyl ester), a potent commercially available anti-inflammatory and pro-resolving mediator, on ventilation-induced lung injury (VILI) have been extensively studied, but its characteristics as a pro-resolving mediator have not. Here, anesthetized Sprague-Dawley rats were ventilated with a high tidal volume (20 mL/kg, HV T) for 1 h and randomly allocated to recover for 6, 12, 24, 48, 72, 96 or 168 h; BML-111 was administered at the peak of inflammation to evaluate its pro-resolving effect on VILI. The one-hour HV T induced a maximal pulmonary inflammatory response at 12 h that was largely resolved by 72 h. BML-111 largely resolved the maximal inflammatory response at 48 h; the resolution interval (R i) was shortened by 26 h. Similarly, HV T elicited a time course of changes in histopathology and pulmonary edema, and BML-111 alleviates these changes. Mechanistically, neutrophil apoptosis was significantly increased in BML-111-treated rats subjected to HV T. The apoptosis inhibitor z-VAD-fmk partially reversed the proapoptotic actions of BML-111 on neutrophil and the resolving effects of BML-111 on VILI but had no effect alone. Importantly, the HV T treatment activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) and NF-κB signaling pathways in the lung tissue, and BML-111 further induced Nrf2 and HO-1 expression but inhibited the NF-κB pathway. Intriguingly, when we inhibited the Nrf2/HO-1 pathway with the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX), Nrf2 expression was further increased, but the inhibitory effects of BML-111 on the NF-κB pathway and on the subsequent inflammatory response, and the proapoptotic actions on neutrophil were reversed. The results suggest that BML-111 promotes the resolution of HV T -induced inflammation to mitigate VILI in rats, perhaps by modulating the Nrf2/HO-1 and NF-κB pathways and subsequently increasing neutrophil apoptosis. Highlights • Inflammatory responses of rats to HV T ventilation vary over time. • BML-111 accelerates the resolution of inflammation caused by HV T. • BML-111's proapoptotic actions on neutrophils are crucial to its pro-resolving effect. • The BML-111-activated Nrf2/HO-1 pathway drives its proapoptotic and pro-resolving action in VILI. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15675769
Volume :
69
Database :
Academic Search Index
Journal :
International Immunopharmacology
Publication Type :
Academic Journal
Accession number :
135184783
Full Text :
https://doi.org/10.1016/j.intimp.2019.02.005