Back to Search Start Over

Novel approach to improve progesterone hydroxylation selectivity by CYP106A2 via rational design of adrenodoxin binding.

Authors :
Sagadin, Tanja
Riehm, Jan
Putkaradze, Natalia
Hutter, Michael C.
Bernhardt, Rita
Source :
FEBS Journal. Mar2019, Vol. 286 Issue 6, p1240-1249. 10p.
Publication Year :
2019

Abstract

Bacterial P450s have considerable potential for biotechnological applications. The P450 CYP106A2 from Bacillus megaterium ATCC 13368 converts progesterone to several hydroxylated products that are important precursors for pharmaceutical substances. As high yields of monohydroxylated products are required for biotechnological processes, improving this conversion is of considerable interest. It has previously been shown that the binding mode of the redox partner can affect the selectivity of the progesterone hydroxylation, being more stringent in case of the Etp1 compared with Adx(4–108). Therefore, in this study we aimed to improve hydroxylation selectivity by optimizing the binding of Adx(4–108) with CYP106A2 allowing for a shorter distance between both redox centers. To change the putative binding interface of Adx(4–108) with CYP106A2, molecular docking was used to choose mutation sites for alteration. Mutants at positions Y82 and P108 of Adx were produced and investigated, and confirmed our hypothesis. Protein–protein docking, as well as conversion studies, using the mutants demonstrated that the iron–sulfur(FeS) cluster/heme distance diminished significantly, which subsequently led to an approximately 2.5‐fold increase in 15β‐hydroxyprogesterone, the main product of progesterone conversion by CYP106A2. CYP106A2 can convert progesterone to several hydroxylated products (important pharmaceutical precursors). Here, we aim to improve hydroxylation selectivity by optimizing the binding of Adx (4–108) with CYP106A2. Adx(4–108) mutants were chosen via molecular docking and confirmed our hypothesis. The protein–protein docking showed a shorter distance between both redox centers and the conversion studies confirmed a considerable increase in the main progesterone product. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*PROGESTERONE
*HYDROXYLATION

Details

Language :
English
ISSN :
1742464X
Volume :
286
Issue :
6
Database :
Academic Search Index
Journal :
FEBS Journal
Publication Type :
Academic Journal
Accession number :
135400530
Full Text :
https://doi.org/10.1111/febs.14722