Back to Search Start Over

A stabilized finite element method for enforcing stiff anisotropic cohesive laws using interface elements.

Authors :
Ghosh, Gourab
Duddu, Ravindra
Annavarapu, Chandrasekhar
Source :
Computer Methods in Applied Mechanics & Engineering. May2019, Vol. 348, p1013-1038. 26p.
Publication Year :
2019

Abstract

Abstract We present a stabilized finite element method that generalizes Nitsche's method for enforcing stiff anisotropic cohesive laws with different normal and tangential stiffness. For smaller values of cohesive stiffness, the stabilized method resembles the standard method, wherein the traction on the crack surface is enforced as a Neumann boundary condition. Conversely, for larger values of cohesive stiffness, the stabilized method resembles Nitsche's method, wherein the cohesive law is enforced as a kinematic constraint. We present several numerical examples, in two-dimensions, to compare the performance of the stabilized and standard methods. Our results illustrate that the stabilized method enables accurate recovery of crack-face tractions for stiff isotropic and anisotropic cohesive laws; whereas, the standard method is less accurate due to spurious traction oscillations. Also, the stabilized method could mitigate spurious sensitivity of load–displacement results to displacement increment in mixed-mode fracture simulation, owing to its stability and accuracy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00457825
Volume :
348
Database :
Academic Search Index
Journal :
Computer Methods in Applied Mechanics & Engineering
Publication Type :
Academic Journal
Accession number :
135708607
Full Text :
https://doi.org/10.1016/j.cma.2019.02.007