Back to Search Start Over

Mercury methylation by Geobacter metallireducens GS-15 in the presence of Skeletonema costatum.

Authors :
Ding, Ling-Yun
Zhang, Yao-Yu
Zhang, Li-Juan
Fang, Fang
He, Ning-Ning
Liang, Peng
Wu, Sheng Chun
Wong, Ming Hung
Tao, Hu-Chun
Source :
Science of the Total Environment. Jun2019, Vol. 671, p208-214. 7p.
Publication Year :
2019

Abstract

In this study, bacterial mercury (Hg) methylation was investigated under the influence of red-tide algae of Skeletonema costatum (S. costatum). The distribution and speciation of total mercury (THg) and methylmercury (MeHg) were profiled by employing Geobacter metallireducens (G. metallireducens GS-15) as the methylating bacteria. G. metallireducens GS-15 showed different capabilities in methylating different inorganic forms of Hg(II) (HgCl 2) and Hg(II)-Algae (HgCl 2 captured by S. costatum) to MeHg. In the absence of S. costatum , a maximum methylation efficiency of 4.31 ± 0.47% was achieved with Hg(II) of 1–100 μg L−1, while accelerated MeHg formation rate was detected at a higher initial Hg(II) concentration. In the presence of S. costatum , there were distinct changes in the distribution of THg and MeHg by altering the bioavailability of Hg(II) and Hg(II)-Algae. A larger proportion of THg tended to be retained by a higher algal biomass, resulting in decreased methylation efficiencies. The methylation efficiency of Hg(II) decreased from 3.01 ± 0.10% to 1.01 ± 0.01% with 10-mL and 250-mL algal media, and that of Hg(II)-Algae decreased from 0.83 ± 0.13% to 0.22 ± 0.01% with 10-mL and 250-mL Hg(II)-Algae media. Fourier transform infrared spectrometry, surface charge properties and elemental compositions of S. costatum were used to infer that amine, carboxyl and sulfonate functional groups were most likely to interact with Hg(II) through complexation and/or electrostatic attraction. These results suggest that red-tide algae may be an influencing factor on bacterial Hg methylation in eutrophic water bodies. Unlabelled Image • Bacterial Hg methylation was investigated in the Hg-algae-bacteria system. • Bacterial MeHg yield and methylation efficiency depended on algal biomass. • Higher algal biomass reduced the potential risk of bacterial Hg methylation. • S. costatum exerted significant influences on Hg distribution and speciation. • Various functional groups in algal cells were involved in Hg-algae interactions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00489697
Volume :
671
Database :
Academic Search Index
Journal :
Science of the Total Environment
Publication Type :
Academic Journal
Accession number :
136135928
Full Text :
https://doi.org/10.1016/j.scitotenv.2019.03.222