Back to Search Start Over

POSS-Derived Synthesis and Full Life Structural Analysis of Si@C as Anode Material in Lithium Ion Battery.

Authors :
Bai, Ziyu
Tu, Wenmao
Zhu, Junke
Li, Junsheng
Deng, Zhao
Li, Danpeng
Tang, Haolin
Source :
Polymers (20734360). Apr2019, Vol. 11 Issue 4, p576-576. 1p. 3 Diagrams, 6 Graphs.
Publication Year :
2019

Abstract

Polyhedral oligomeric silsesquioxane (POSS)-derived Si@C anode material is prepared by the copolymerization of octavinyl-polyhedral oligomeric silsesquioxane (octavinyl-POSS) and styrene. Octavinyl-polyhedral oligomeric silsesquioxane has an inorganic core (-Si8O12) and an organic vinyl shell. Carbonization of the core-shell structured organic-inorganic hybrid precursor results in the formation of carbon protected Si-based anode material applicable for lithium ion battery. The initial discharge capacity of the battery based on the as-obtained Si@C material Si reaches 1500 mAh g−1. After 550 charge-discharge cycles, a high capacity of 1430 mAh g−1 was maintained. A combined XRD, XPS and TEM analysis was performed to investigate the variation of the discharge performance during the cycling experiments. The results show that the decrease in discharge capacity in the first few cycles is related to the formation of solid electrolyte interphase (SEI). The subsequent rise in the capacity can be ascribed to the gradual morphology evolution of the anode material and the loss of capacity after long-term cycles is due to the structural pulverization of silicon within the electrode. Our results not only show the high potential of the novel electrode material but also provide insight into the dynamic features of the material during battery cycling, which is useful for the future design of high-performance electrode material. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
11
Issue :
4
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
136207878
Full Text :
https://doi.org/10.3390/polym11040576