Back to Search Start Over

A fully bio-based composite coating with mechanical robustness and dual superlyophobicity for efficient two-way oil/water separation.

Authors :
Luo, Yu-Qiong
Song, Xuan
Song, Fei
Wang, Xiu-Li
Wang, Yu-Zhong
Source :
Journal of Colloid & Interface Science. Aug2019, Vol. 549, p123-132. 10p.
Publication Year :
2019

Abstract

Recently, two-way oil/water separation materials bearing both "water-removing" and "oil-removing" functions are of great interest for treating environmental water pollution. Despite having switchable surface wettability, these materials are generally designed to possess superhydrophilicity in air, which, standing on the viewpoint of thermodynamics, is unstable and easy to lose the superwetting property. Concerning the full exploitation of sustainable biomass resources, herein, we use soy protein and ramie fiber to fabricate a cross-linked biocomposite whose amphiphilicity can be tuned by introducing a low surface-energy agent, octadecylamine. The resultant composite can be used as a coating for stainless steel meshes, preparing stably hydrophobic surface in air as well as achieving dual superlyophobicity under liquid that is required for efficiently separating light and heavy oils from water. Furthermore, a high separation efficiency is acquired for both light oil/water and heavy oil/water mixtures during cyclic usage. Notably, the fully bio-based coating displays high resistance against mechanical abrasion and harsh chemical corrosions (acid, alkaline, and salt) without losing high separation efficiency, indicating the potential application of such material in oily wastewater treatment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219797
Volume :
549
Database :
Academic Search Index
Journal :
Journal of Colloid & Interface Science
Publication Type :
Academic Journal
Accession number :
136463498
Full Text :
https://doi.org/10.1016/j.jcis.2019.04.055