Back to Search Start Over

Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continuous upflow anaerobic microbial fuel cell.

Authors :
Subha, C.
Kavitha, S.
Abisheka, S.
Tamilarasan, K.
Arulazhagan, P.
Rajesh Banu, J.
Source :
Fuel. Sep2019, Vol. 251, p224-232. 9p.
Publication Year :
2019

Abstract

• Upflow MFC efficiently treats chocolaterie wastewater and enhances power production. • A higher organic removal of 70% was achieved by upflow microbial fuel cell. • At 15 h hydraulic retention time, a maximal power density of 98 mW/m2 was obtained. • At OLR of 1.6 gCOD/L d, the achieved voltage output was found to be 540 mV. The real wastewater generated from chocolateries is complex in nature and has high organic content. Microbial fuel cell (MFC) is the sustainable technology for the treatment of wastewater and simultaneous power generation. In this study an attempt has been made to utilize the chocolaterie wastewater as substrate in upflow anaerobic microbial fuel cell (UAMFC) for simultaneous waste treatment and power generation. The main aim of this study is to evaluate the effect of hydraulic retention time (HRT) and organic loading rate (OLR) on organic removal and power generation. Four bacterial species (Achromobacter insuavis strain BT1 (MF346036.1), Achromobacter insuavis strain B3 (MF346037.1), Bacillus encimensis strain B4 (MF346038.1) and Kocuria flava strain B5 (MF346039.1) were the predominant bacterial strains obtained from anode during biofilm analysis. They play a major role in substrate degradation and power generation. A maximum power density and chemical oxygen demand (COD) removal of 98 mW/m2 and 70% was obtained at a HRT of 15 h. A mathematical modelling, Monod kinetics was done to predict the substrate dependency with that of power production. The model implied that the maximal achievable power density (V max) was calculated to be 104.9 mW/m2 at higher substrate concentration of 0.8 g/L. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00162361
Volume :
251
Database :
Academic Search Index
Journal :
Fuel
Publication Type :
Academic Journal
Accession number :
136582145
Full Text :
https://doi.org/10.1016/j.fuel.2019.04.052