Back to Search Start Over

Genomic Mismatch at Locus and Kidney Allograft Rejection.

Authors :
Steers, N. J.
Li, Y.
Drace, Z.
D'Addario, J. A.
Fischman, C.
Liu, L.
Xu, K.
Na, Y.- J.
Neugut, Y. D.
Zhang, J. Y.
Sterken, R.
Balderes, O.
Bradbury, D.
Ozturk, N.
Ozay, F.
Goswami, S.
Mehl, K.
Wold, J.
Jelloul, F. Z.
Rohanizadegan, M.
Source :
New England Journal of Medicine. 5/16/2019, Vol. 380 Issue 20, p1918-1928. 11p.
Publication Year :
2019

Abstract

<bold>Background: </bold>In the context of kidney transplantation, genomic incompatibilities between donor and recipient may lead to allosensitization against new antigens. We hypothesized that recessive inheritance of gene-disrupting variants may represent a risk factor for allograft rejection.<bold>Methods: </bold>We performed a two-stage genetic association study of kidney allograft rejection. In the first stage, we performed a recessive association screen of 50 common gene-intersecting deletion polymorphisms in a cohort of kidney transplant recipients. In the second stage, we replicated our findings in three independent cohorts of donor-recipient pairs. We defined genomic collision as a specific donor-recipient genotype combination in which a recipient who was homozygous for a gene-intersecting deletion received a transplant from a nonhomozygous donor. Identification of alloantibodies was performed with the use of protein arrays, enzyme-linked immunosorbent assays, and Western blot analyses.<bold>Results: </bold>In the discovery cohort, which included 705 recipients, we found a significant association with allograft rejection at the LIMS1 locus represented by rs893403 (hazard ratio with the risk genotype vs. nonrisk genotypes, 1.84; 95% confidence interval [CI], 1.35 to 2.50; P = 9.8×10-5). This effect was replicated under the genomic-collision model in three independent cohorts involving a total of 2004 donor-recipient pairs (hazard ratio, 1.55; 95% CI, 1.25 to 1.93; P = 6.5×10-5). In the combined analysis (discovery cohort plus replication cohorts), the risk genotype was associated with a higher risk of rejection than the nonrisk genotype (hazard ratio, 1.63; 95% CI, 1.37 to 1.95; P = 4.7×10-8). We identified a specific antibody response against LIMS1, a kidney-expressed protein encoded within the collision locus. The response involved predominantly IgG2 and IgG3 antibody subclasses.<bold>Conclusions: </bold>We found that the LIMS1 locus appeared to encode a minor histocompatibility antigen. Genomic collision at this locus was associated with rejection of the kidney allograft and with production of anti-LIMS1 IgG2 and IgG3. (Funded by the Columbia University Transplant Center and others.). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00284793
Volume :
380
Issue :
20
Database :
Academic Search Index
Journal :
New England Journal of Medicine
Publication Type :
Academic Journal
Accession number :
136762093
Full Text :
https://doi.org/10.1056/NEJMoa1803731