Back to Search Start Over

Roles of solitary eddy and splash in drift wave–zonal flow system in a linear magnetized plasma.

Authors :
Arakawa, H.
Sasaki, M.
Inagaki, S.
Kosuga, Y.
Kobayashi, T.
Kasuya, N.
Yamada, T.
Nagashima, Y.
Kin, F.
Fujisawa, A.
Itoh, K.
Itoh, S.-I.
Source :
Physics of Plasmas. May2019, Vol. 26 Issue 5, pN.PAG-N.PAG. 9p. 6 Color Photographs, 1 Diagram, 2 Graphs.
Publication Year :
2019

Abstract

We experimentally investigate the roles of drift wave type fluctuations interacting with zonal flow. The drift wave type fluctuations examined in this paper are characterized by nonlinear solitary wave, splash, and solitary eddy [Arakawa et al., Sci. Rep. 6, 33371 (2016)]. Compared to the nonlinear solitary wave, splash has a short lifetime, while solitary eddy has a long lifetime. Excitation/damping of the splash and the solitary eddy are synchronized with zonal perturbation. The roles of the splash and the solitary eddy in transport processes are also discussed. Solitary eddy contributes to momentum transport and accelerates zonal flow. The particle flux driven by the solitary eddy and the splash is in the inward and outward directions, respectively, with similar magnitudes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1070664X
Volume :
26
Issue :
5
Database :
Academic Search Index
Journal :
Physics of Plasmas
Publication Type :
Academic Journal
Accession number :
136773341
Full Text :
https://doi.org/10.1063/1.5094577